Rings with finite Gorenstein injective dimension
نویسندگان
چکیده
منابع مشابه
Gorenstein injective dimension, Bass formula and Gorenstein rings
Let (R,m, k) be a noetherian local ring. It is well-known that R is regular if and only if the injective dimension of k is finite. In this paper it is shown that R is Gorenstein if and only if the Gorenstein injective dimension of k is finite. On the other hand a generalized version of the so-called Bass formula is proved for finitely generated modules of finite Gorenstein injective dimension. ...
متن کاملRings with Finite Gorenstein Global Dimension
We find new classes of non noetherian rings which have the same homological behavior that Gorenstein rings.
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملA Bass formula for Gorenstein injective dimension
In this paper a generalized version of the Bass formula is proved for finitely generated modules of finite Gorenstein injective dimension over a commutative noetherian ring.
متن کاملSelforthogonal modules with finite injective dimension II
Let Λ be a left and right Artin ring and ΛωΛ a faithfully balanced selforthogonal bimodule. We give a sufficient condition that the injective dimension of ωΛ is finite implies that of Λω is also finite. 2003 Elsevier Science (USA). All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2003
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-03-07466-5